# Bosch Semiconductors for Automotive

**Bosch Mobility Solutions** 

MEMS Sensors System ICs Power Semiconductors IP Modules



# Smart and innovative components for new market requirements



#### ABOUT THIS CATALOG

This catalog shows our current range of electronic components and IP modules for automotive applications. Bosch offers MEMS sensors, application-specific ICs and IP modules, based on almost half a century of experience.

We stand for future, innovative technologies – driven by customer-specific requirements. We are the largest manufacturer for micromechanical sensors, one of the biggest semiconductor makers for automotive and one of the driving forces in the IP module market.

Our world-wide customer base includes OEMs, well-known makers of electronic control units, and the Bosch automotive system divisions.

Whenever you design advanced safety and comfort systems or highly efficient powertrain electronics: Contact us to benefit from our smart and innovative portfolio.

#### ABOUT OUR PRODUCTS

#### **MEMS SENSORS:**

MEMS sensors (micro electro-mechanical systems) are a key technology for the mobile and connected world. Bosch has been at the forefront of MEMS technology for more than 25 years now. Bosch MEMS sensors deliver high performance, are small, sturdy, and extremely cost-effective due to high volume series production.

#### SYSTEM ICS:

Modern types of vehicles include a number of electronic control units. Integrated circuits (ICs) are an essential component of such units. As one of the first suppliers, Bosch began with the development and production of such sophisticated integrated circuits as early as the late 1960s. Bosch ICs are customized for specific applications in the vehicle system (= application specific ICs).

#### **POWER SEMICONDUCTORS:**

Efficient use of electric power is paramount for electric vehicles. Our new silicon carbide power switches are specifically designed for automotive use. They reduce power losses in drive electronics and power converters, resulting in an increase of range.

### **IP MODULES:**

Intellectual property (IP) modules allow chipmakers to quickly adopt complete ranges of functions in standard products such as microcontrollers, FPGAs and ASSPs, thus significantly reducing development times and costs. That is, they represent an assembly plan to implement these functions in hardware.

### MEMS SENSORS

| Restraint systems                                     |    |
|-------------------------------------------------------|----|
| <ul> <li>Acceleration sensors</li> </ul>              | 4  |
| <ul> <li>Angular rate sensors</li> </ul>              | 6  |
| Vehicle comfort systems                               |    |
| <ul> <li>Sensors for motion detection</li> </ul>      | 7  |
| Engine management systems                             |    |
| <ul> <li>Barometric pressure sensors</li> </ul>       | 9  |
| Seat comfort systems                                  |    |
| <ul> <li>Low pressure sensors</li> </ul>              | 10 |
| Transmission control systems                          |    |
| <ul> <li>Hydraulic pressure sensors</li> </ul>        | 11 |
| Vehicle dynamics control (VDC)                        |    |
| ► Inertial sensors                                    | 12 |
| Highly automated driving (HAD) systems                |    |
| <ul> <li>High performance inertial sensors</li> </ul> | 13 |
| Active suspension systems                             |    |
| <ul> <li>Acceleration sensors</li> </ul>              | 14 |

### SYSTEM ICS

| Restraint systems                                      |    |
|--------------------------------------------------------|----|
| <ul> <li>Single-chip airbag system ICs</li> </ul>      | 15 |
| <ul> <li>Sensor interfaces</li> </ul>                  | 17 |
| Advanced driver assistance systems                     |    |
| <ul> <li>System basis ICs</li> </ul>                   | 18 |
| Engine management systems                              |    |
| <ul> <li>System basis ICs, power supply ICs</li> </ul> | 20 |
| <ul> <li>Low-side power switches</li> </ul>            | 21 |
| <ul> <li>Ignition stage driver</li> </ul>              | 22 |
| <ul> <li>Oxygen sensor interfaces</li> </ul>           | 23 |
| ► B6 bridge                                            | 24 |
| Transmission control systems                           |    |
| <ul> <li>System basis ICs</li> </ul>                   | 25 |
| <ul> <li>Current regulators</li> </ul>                 | 26 |
| Pyro fuse systems                                      |    |
| <ul> <li>Pyro fuse driver</li> </ul>                   | 27 |
| Alternator electronics                                 |    |
|                                                        |    |

Alternator regulators

### POWER SEMICONDUCTORS

Electric drive and power conversion systems

Silicon carbide power switches

### IP MODULES

#### CAN IP modules

| <ul> <li>M_CAN and M_TTCAN IP module</li> </ul>                             | 31 |
|-----------------------------------------------------------------------------|----|
| C_CAN FD8 IP module                                                         | 31 |
| ► CAN FD                                                                    | 31 |
| <ul> <li>CAN FD protocol</li> </ul>                                         | 31 |
| <ul> <li>VHDL reference CAN</li> </ul>                                      | 31 |
| <ul> <li>TSU IP module – Timestamping unit for M_CAN</li> </ul>             | 31 |
| <ul> <li>DMU IP module – Direct memory access<br/>unit for M_CAN</li> </ul> | 31 |
| Timer IP module                                                             |    |
| ► Generic timer module (GTM)                                                | 32 |

### APPENDIX

29

| ► | Abbreviations | 33 |
|---|---------------|----|
| ► | Packages      | 34 |

► Contact 38

30

### Acceleration sensors

Acceleration sensors in airbag systems measure strong acceleration values within milliseconds. Depending on the airbag system and the number of existing airbags, our customers can install the MEMS sensors in the ECU or as a standalone component in the vehicle's front or side (satellite sensor).

### HIGH-G SINGLE AXIS ACCELERATION SENSORS

| Туре                          | Product | Range<br>[g] | Output                 | Tolerance<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-------------------------------|---------|--------------|------------------------|------------------|-----------------------------|--------------------------|--------------------------|---------|
| Single axis (a <sub>y</sub> ) | SMA682  | ±120/240/480 | PSI5, 10 bit           | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>z</sub> ) | SMA684  | ±120/240     | PSI5, 10 bit           | 7                | 4.5 - 11                    | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>z</sub> ) | SMA694  | ±480         | PSI5, 10 bit           | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>y</sub> ) | SMA750  | ±120/240/480 | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>z</sub> ) | SMA751  | ±120/240/480 | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>x</sub> ) | SMA755  | ±240/480     | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>x</sub> ) | SMA758  | ±120/240/480 | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Single axis (a <sub>x</sub> ) | SMA780  | ±120/240/480 | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | LGA SiP |
| Single axis (a <sub>z</sub> ) | SMA781  | ±120/240/480 | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | LGA SiP |
| Single axis (a <sub>x</sub> ) | SMA790  | ±240/480     | PSI5, 10 bit or 14 bit | 7                | 4.5-11                      | -40                      | 125                      | LGA SiP |



# 09

### Acceleration sensors

### HIGH-G DUAL AXIS ACCELERATION SENSORS

| Туре                         | Product | Range<br>[g]                                    | Output                 | Tolerance<br>[%]                           | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|------------------------------|---------|-------------------------------------------------|------------------------|--------------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Dual axis (a <sub>xy</sub> ) | SMA660  | ±120                                            | SPI, 12 bit            | 5                                          | 3.3 or 5                    | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA665  | ±120                                            | SPI, 12 bit            | 7                                          | 3.3 or 5                    | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA720  | ±128 (a <sub>x</sub> )<br>±32 (a <sub>z</sub> ) | SafeSPI, 14 bit        | 5 (a <sub>x</sub> )<br>7 (a <sub>z</sub> ) | 3.3 or 6.7                  | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA760  | ±128                                            | SafeSPI, 14 bit        | 5                                          | 3.3 or 6.7                  | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA685  | ±120/240/480                                    | PSI5, 10 bit           | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA686  | ±120/240                                        | PSI5, 10 bit           | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA696  | ±480                                            | PSI5, 10 bit           | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA752  | ±120/240/480                                    | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA753  | ±120/240/480                                    | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA757  | ±240/480                                        | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA773  | ±30/60                                          | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xz</sub> ) | SMA774  | ±30/60                                          | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | SOIC8n  |
| Dual axis (a <sub>xy</sub> ) | SMA777  | ±30/60                                          | PSI5, 10 bit or 14 bit | 7                                          | 4.5 - 11                    | -40                      | 125                      | LGA SiP |
| Dual axis (a <sub>xz</sub> ) | SMA778  | ±30/60                                          | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | LGA SiP |
| Dual axis (a <sub>xy</sub> ) | SMA782  | ±120/240/480                                    | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | LGA SiP |
| Dual axis (a <sub>xz</sub> ) | SMA783  | ±120/240/480                                    | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | LGA SiP |
| Dual axis (a <sub>xy</sub> ) | SMA792  | ±240/480                                        | PSI5, 10 bit or 14 bit | 7                                          | 4.5-11                      | -40                      | 125                      | LGA SiP |

### Angular rate and pressure sensors

Rollover and pressure sensors support an airbag system in the detection of accidents.

### ANGULAR RATE SENSOR FOR ROLLOVER SENSING

| Туре                               | Product | Range<br>[°/s] | Output          | Sensitivity  | Sensitivity<br>tolerance typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|------------------------------------|---------|----------------|-----------------|--------------|--------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Angular rate sensor ( $\Omega_x$ ) | SMG810  | 300            | SafeSPI, 16 bit | ±100 LSB/°/s | ±3                                   | 3.3 or 5 or 6.7             | -40                      | 125                      | BGA64   |

Other configurations are possible on customer demand

PC X

### COMBINED INERTIAL SENSOR FOR ROLLOVER SENSING

| Туре                                                                             | Product | Range          | Output      | Sensitivity              | Sensitivity<br>tolerance typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|----------------------------------------------------------------------------------|---------|----------------|-------------|--------------------------|--------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Angular rate sensor ( $\Omega_x$ ) and single axis acceleration sensor ( $a_z$ ) | SMI720  | ±300°/s<br>±5g | SPI, 16 bit | 100LSB/°/s<br>5,000LSB/g | ±5<br>±6                             | 3.3                         | -40                      | 105                      | BGA64   |

#### PRESSURE SENSORS FOR SIDE IMPACT SENSING AND PEDESTRIAN PROTECTION

| Туре                       | Product | Range<br>[kPa]              | Output                                 | Sensitivity   | Tolerance<br>[kPa] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package                                    |
|----------------------------|---------|-----------------------------|----------------------------------------|---------------|--------------------|-----------------------------|--------------------------|--------------------------|--------------------------------------------|
| Barometric pressure sensor | SMP470  | 50 - 110<br>(enhanced: 140) | PSI5, 10bit<br>or 16bit<br>(V1.3/V2.1) | 53.53 LSB/kPA | ±3                 | 4.55 - 11                   | -40                      | 125                      | LGA8<br>(solderless<br>contacting<br>only) |
| Barometric pressure sensor | SMP475  | 50–110<br>(enhanced: 140)   | PSI5, 10bit<br>or 16bit<br>(V1.3/V2.1) | 53.53 LSB/kPA | ±3                 | 4.55-11                     | -40                      | 125                      | SOIC8n                                     |

## Vehicle comfort systems



### Sensors for motion detection

Vehicle comfort features like navigation, tilt or inclination measurement, telematics, car key modules, car alarm or eCall systems are a rapidly growing field of application for MEMS sensors. Typically, these applications do not have ASIL-classified requirements of safety applications, such as airbag or stability systems. Therefore, Bosch developed the concept for a new set of cost efficient MEMS sensors for motion detection in comfort applications.

### ACCELERATION SENSORS FOR NON-SAFETY APPLICATIONS

| Туре                                                | Product | Range<br>[g]          | Output                          | Sensitivity                    | Sensitivity<br>tolerance typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-----------------------------------------------------|---------|-----------------------|---------------------------------|--------------------------------|--------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Tri-axis acceleration<br>sensor (a <sub>xyz</sub> ) | SMA130  | ±2<br>±4<br>±8<br>±16 | SPI, I <sup>2</sup> C<br>14 bit | 4,096<br>2,048<br>1,024<br>512 | ±2.1                                 | 1.62-3.6                    | -40                      | 105*                     | LGA12   |
| Tri-axis acceleration sensor (a <sub>xyz</sub> )    | SMA131  | ±2<br>±4<br>±8        | SPI, I <sup>2</sup> C<br>14 bit | 4,096<br>2,048<br>1,024        | ±2.1                                 | 1.62-3.6                    | -40                      | 105*                     | LGA12   |

\*85-105 °C: Extended operating temperature range, typical values only

### ANGULAR RATE SENSOR FOR NON-SAFETY APPLICATIONS

| Туре                                                | Product | Range<br>[°/s]                           | Output                          | Sensitivity<br>[°/s]                   | Sensitivity<br>tolerance typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-----------------------------------------------------|---------|------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Tri-axis angular rate<br>sensor (Ω <sub>xyz</sub> ) | SMG130  | ±125<br>±250<br>±500<br>±1,000<br>±2,000 | SPI, I <sup>2</sup> C<br>16 bit | 262.4<br>131.2<br>65.6<br>32.8<br>16.4 | ±1.5                                 | 2.4-3.6                     | -40                      | 105*                     | LGA16   |

\*85-105°C: Extended operating temperature range, typical values only

## Vehicle comfort systems



### Sensors for motion detection

### COMBINED INERTIAL SENSORS FOR NON-SAFETY APPLICATIONS

| Туре                                                                                                      | Product | Range<br>(switchable)                                                                     | Output                                               | Sensitivity<br>Gyroscope<br>[LSB/°/s]  | Sensitivity<br>Accelerometer<br>[LSB/g] | Sensitivity<br>tolerance<br>Gyroscope typ.<br>[%] | Sensitivity<br>tolerance<br>Accelerometer typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-----------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Tri-axis angular<br>rate sensor<br>$(\Omega_{xyz})$<br>and tri-axis<br>acceleration<br>sensor $(a_{xyz})$ | SMI130  | ±125°/s,<br>±250°/s,<br>±500°/s,<br>±1,000°/s,<br>±2,000°/s,<br>±2g<br>±4g<br>±8g<br>±16g | SPI,<br>I <sup>2</sup> C<br>16 bit (Ω)<br>12 bit (a) | 262.4<br>131.2<br>65.6<br>32.8<br>16.4 | 1,024<br>512<br>256<br>128              | ±1.5                                              | ±1.4                                                  | 2.4-3.6                     | -40                      | 105*                     | LGA16   |
| Tri-axis angular<br>rate sensor<br>$(\Omega_{xyz})$<br>and tri-axis<br>acceleration<br>sensor $(a_{xyz})$ | SM1230  | ±125°/s,<br>±250°/s,<br>±500°/s,<br>±1,000°/s,<br>±2,000°/s<br>±2g<br>±4g<br>±8g<br>±16g  | SPI,<br>I <sup>2</sup> C<br>16 bit (Ω)<br>16 bit (a) | 262.4<br>131.2<br>65.6<br>32.8<br>16.4 | 16,384<br>8,192<br>4,096<br>2,048       | ±1.5                                              | ±1                                                    | 2.4-3.6                     | -40                      | 105                      | LGA16   |

\*85-105°C: Extended operating temperature range, typical values only



### Barometric pressure sensors

Bosch barometric pressure sensors are a key component in engine management for diesel and gasoline engines. They are designed to measure the current ambient pressure accurately and with low drift. Atmospheric pressure is a function of height above sea level as well as of weather conditions. The engine management system uses the sensor measurement data to ensure the optimum air-fuel mixture, irrespective of whether the vehicle is traveling along a coastal road or a road up in the mountains. The benefit of this constant rebalancing of the mixture ratio is that it reduces fuel consumption as well as emissions of  $CO_2$  and other pollutants.

#### PRESSURE SENSOR FOR DIESEL OR GASOLINE ENGINE MANAGEMENT

| Туре                          | Product | Range<br>[kPa] | Output                               | Tolerance<br>[over lifetime and temperature] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-------------------------------|---------|----------------|--------------------------------------|----------------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Barometric pressure<br>sensor | SMP580  | 40 - 115       | SPI<br>10 bit or 12 bit<br>or 16 bit | ≤1.0 kPa (pressure)<br>≤3 K (temperature)    | 3.3-5                       | -40                      | 125                      | SOIC8   |

## Seat comfort systems

### Low pressure sensors

Bosch low pressure sensors are a key component for pneumatic seat applications. The sensor regulates the correct inflation of the air chambers in multi-contoured seats and ensures that the seat adapts to the anatomy and the individual requirements of the driver and front-seat passenger. Thus, form-adjustable lumbar support as well as adjustable side bolsters on the backrest and seat area stabilize the vehicle occupants. A massage function can also be realized.

Particularly when driving on winding roads and on long trips, the low pressure sensors provide increased comfort and help reduce driver fatigue.

#### PRESSURE SENSOR FOR PNEUMATIC SEAT APPLICATIONS

| Туре                   | Product | Range<br>[kPa] | Output        | Tolerance<br>[over lifetime and temperature] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|------------------------|---------|----------------|---------------|----------------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Low pressure<br>sensor | SMP580  | 60-165         | SPI<br>10 bit | ≤1.5 kPa (pressure)<br>≤5K (temperature)     | 3.3-5                       | -40                      | 125                      | SOIC8   |

## Transmission control systems



### Hydraulic pressure sensors

MEMS sensors for automatic transmission detect the oil pressure in the hydraulic actuators of the gearbox – with a very precise response time of less than a millisecond. This is crucial for fast and ultra-smooth shifting of gears. The Bosch medium hydraulic pressure sensors are characterized by very high media resistance and durability due to their hermetically sealed metal package.

### PRESSURE SENSORS FOR TRANSMISSION CONTROL

| Туре                         | Product | Range<br>[bar] | Output                | Tolerance<br>[% FS] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package                              |
|------------------------------|---------|----------------|-----------------------|---------------------|-----------------------------|--------------------------|--------------------------|--------------------------------------|
| Hydraulic pressure<br>sensor | SMP142  | 0.5-22         | SENT/analog<br>12 bit | 1.2-1.8             | 5                           | -40                      | 150                      | Hermetically sealed metal package    |
| Hydraulic pressure<br>sensor | SMP144  | 0.5-40         | SENT/analog<br>12 bit | 1.2-1.8             | 5                           | -40                      | 150                      | Hermetically<br>sealed metal package |
| Hydraulic pressure<br>sensor | SMP147  | 0.5-70         | SENT/analog<br>12 bit | 1.2-1.8             | 5                           | -40                      | 150                      | Hermetically sealed metal package    |

Sensors with customer specific pressure ranges (10 - 70 bar) on request

## Vehicle dynamics control (VDC)



### Inertial sensors

In vehicle dynamics systems, MEMS inertial sensors measure angular rate and acceleration. This is essential to determine the dynamic state of the vehicle and to check the plausibility of the rotation rate signal.

#### COMBINED INERTIAL SENSORS FOR VDC

| Туре                                                                                      | Product | Range           | Output                    | Sensitivity              | Sensitivity<br>tolerance typ.<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|-------------------------------------------------------------------------------------------|---------|-----------------|---------------------------|--------------------------|--------------------------------------|-----------------------------|--------------------------|--------------------------|---------|
| Dual angular rate sensor ( $\Omega_{xz}$ ) and tri-axis acceleration sensor ( $a_{xyz}$ ) | SMI860  | ±300°/s<br>±6g  | SafeSPI,<br>16 bit        | 100LSB/°/s<br>5,000LSB/g | ±3<br>±3                             | 3.3 or 5 or 6.7             | -40                      | 125                      | BGA64   |
| Angular rate sensor $(\Omega_z)$ and dual axis acceleration sensor $(a_{xy})$             | SMI810  | ±300 °/s<br>±6g | SafeSPI,<br>16 bit        | 100LSB/°/s<br>5,000LSB/g | ±3<br>±3                             | 3.3 or 5 or 6.7             | -40                      | 125                      | BGA64   |
| Angular rate sensor $(\Omega_x)$ and dual axis acceleration sensor $(a_{xy})$             | SMI800  | ±300 °/s<br>±6g | SafeSPI,<br>16 bit        | 100LSB/°/s<br>5,000LSB/g | ±3<br>±3                             | 3.3 or 5 or 6.7             | -40                      | 125                      | BGA64   |
| Angular rate sensor $(\Omega_x)$ and dual axis acceleration sensor $(a_{yz})$             | SMI710  | ±300°/s<br>±5g  | SPI, PSI5,<br>CAN, 16 bit | 100LSB/°/s<br>5,000LSB/g | ±3<br>±3                             | 3.3 or 5                    | -40                      | 125                      | BGA64   |
| Angular rate sensor $(\Omega_z)$ and dual axis acceleration sensor $(a_{xy})$             | SMI700  | ±300°/s<br>±5g  | SPI, PSI5,<br>CAN, 16 bit | 100LSB/°/s<br>5,000LSB/g | ±3<br>±3                             | 3.3 or 5                    | -40                      | 125                      | BGA64   |

## Highly automated driving (HAD) systems





### High performance inertial sensors

Highly automated driving (HAD) requires precise informations about the vehicle's movements.

The sensor data is used for lane keeping during a safe stop or to verify movement information derived from camera image

or steering angle sensor. The SMU2 family offers excellent offset stability over the entire temperature range.

### HIGH PERFORMANCE INERTIAL SENSORS

| Туре                                                                         | Product | Range                                                | Output | Total offset error | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package |
|------------------------------------------------------------------------------|---------|------------------------------------------------------|--------|--------------------|-----------------------------|--------------------------|--------------------------|---------|
| High performance yaw rate sensor ( $\Omega_z$ ) and 3-axis accelerometer     | SMU200  | ±300°/s (Ω <sub>z</sub> )<br>±6g (a <sub>xyz</sub> ) | SPI    | ±0.25°/s           | 3.3 or 5                    | -40                      | 125                      | CLCC16  |
| High performance pitch / roll sensor ( $\Omega_x$ ) and 3-axis accelerometer | SMU210  | ±300°/s (Ω <sub>x</sub> )<br>±6g (a <sub>xyz</sub> ) | SPI    | ±0.25°/s           | 3.3 or 5                    | -40                      | 125                      | CLCC16  |

## Active suspension systems



### Acceleration sensors

Active suspension systems have an important impact on driving comfort and safety. They are based on low-g acceleration sensors that precisely record the dynamics of the chassis and body even under harsh conditions. Thus, the ECU regulates suspension damping and reduces body movement to make driving safer and more comfortable. The braking distance is shortened and the danger of a rollover is reduced. Also, the vehicle's occupants experience higher driving comfort and less chassis movement.

### LOW-G ACCELERATION SENSORS FOR VIBRATION CONTROL

| Туре                                           | Product         | Range<br>[g] | Output                         | Sensitivity<br>[LSB/g] | Tolerance<br>[%] | V <sub>DD</sub> typ.<br>[V] | T <sub>min</sub><br>[°C] | T <sub>max</sub><br>[°C] | Package                                                                                |
|------------------------------------------------|-----------------|--------------|--------------------------------|------------------------|------------------|-----------------------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------|
| Low-g acceleration<br>sensor (a <sub>x</sub> ) | SMA731/PSS2.31* | ±16          | PSI5 (V2.1),<br>(V1.3 config.) | 480                    | 3.5              | 6.7                         | -40                      | 125                      | SOIC8n<br>(SMA731)<br>Second level<br>package,<br>details upon<br>request<br>(PSS2.31) |
| Low-g acceleration<br>sensor (a <sub>y</sub> ) | SMA732/PSS2.32* | ±16          | PSI5 (V2.1),<br>(V1.3 config.) | 480                    | 3.5              | 6.7                         | -40                      | 125                      | SOIC8n<br>(SMA732)<br>Second level<br>package,<br>details upon<br>request<br>(PSS2.32) |

\*PSS2.3x = satellite sensor variant

### Single-chip airbag system ICs

Airbag system ICs combine all peripheral system functions of an airbag system in one single chip: digital crash sensor interfaces, firing loop drivers, extensive safety and diagnosis mechanisms and the power supply for the entire system.

### SYSTEM ICS FOR VARIOUS AIRBAG SYSTEM CONFIGURATIONS

| Application                                | Product | V <sub>DD</sub> typ.<br>[V] | V <sub>vzP</sub> typ.<br>[V] | V <sub>ver</sub> typ.<br>[V]       | Peripheral<br>sensor<br>interfaces | Analog<br>inter-<br>faces | Interfaces                            | Firing<br>loops        | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package      |
|--------------------------------------------|---------|-----------------------------|------------------------------|------------------------------------|------------------------------------|---------------------------|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------|
| Single-chip<br>integrated<br>airbag system | CG904   | 3.3                         | 14                           | 23.75 or 33<br>(programma-<br>ble) | 6×PSI5<br>(V1.3)                   | 10×AIN<br>2×AIO           | SPI,<br>32 bit (3.3 V),<br>K-Line/LIN | 16 (5 firing<br>modes) | <ul> <li>Enhanced sophisticated safety concept: safety controller; 3 watchdogs; ESP sensor data can be included in safety concept</li> <li>Fully automatic diagnosis:         <ul> <li>Monitoring of voltages (incl. VHx) and overtemperature, SVR diagnosis</li> <li>Built-in sensor test, C<sub>ER</sub> diagnosis, power stage and squib diagnosis, cross coupling diagnosis, connector capacitor diagnosis</li> <li>2 independent 7 bit firing current counters per channel (max time: 3.2 ms)</li> <li>PWM controlled GPIO</li> </ul> </li> </ul> | -40                        | 150                        | TQFP128-EPAD |



### Single-chip airbag system ICs



### SYSTEM ICS FOR VARIOUS AIRBAG SYSTEM CONFIGURATIONS

| Application                                | Product | V <sub>DD</sub> typ.<br>[V] | V <sub>vzP</sub> typ.<br>[V] | V <sub>ver</sub> typ.<br>[V]       | Peripheral<br>sensor<br>interfaces | Analog<br>inter-<br>faces | Interfaces                            | Firing loops           | Features  | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package      |
|--------------------------------------------|---------|-----------------------------|------------------------------|------------------------------------|------------------------------------|---------------------------|---------------------------------------|------------------------|-----------|----------------------------|----------------------------|--------------|
| Single-chip<br>integrated<br>airbag system | CG903   | 3.3                         | 14                           | 23.75 or 33<br>(programma-<br>ble) | 4×PSI5<br>(V1.3)                   | 10×AIN<br>2×AIO           | SPI,<br>32 bit (3.3 V),<br>K-Line/LIN | 12 (5 firing<br>modes) | See CG904 | -40                        | 150                        | TQFP128-EPAD |
| Single-chip<br>integrated<br>airbag system | CG902   | 3.3                         | 14                           | 23.75 or 33<br>(programma-<br>ble) | 2×PSI5<br>(V1.3)                   | 10×AIN<br>2×AIO           | SPI,<br>32 bit (3.3V),<br>K-Line/LIN  | 8 (5 firing<br>modes)  | See CG904 | -40                        | 150                        | TQFP128-EPAD |
| Single-chip<br>integrated<br>airbag system | CG912   | 3.3                         | 14                           | 23.75 or 33<br>(programma-<br>ble) | 2×PAS                              | 4×AIN<br>2×AIO            | SPI,<br>32 bit (3.3V),<br>K-Line/LIN  | 4 (5 firing<br>modes)  | See CG904 | -40                        | 150                        | TQFP64-EPAD  |

### Sensor interfaces

Digital interfaces connect peripheral sensors to the control unit. They provide supply power to the sensors and transfer the sensor readings to the microcontroller.

### SENSOR SUPPLY AND DATA TRANSMISSION FOR DIGITAL PERIPHERAL SENSORS WITH PSI5 INTERFACE (V1.3)

| Application                | Product | Inputs                                                                                                   | Peripheral sensor<br>interfaces | Interfaces            | Features                                                                                                                                                                                                         | T <sub>jmin</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                          |
|----------------------------|---------|----------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|----------------------------------|
| 2 channel<br>PSI5 receiver | CF190   | V <sub>ER</sub> typ.: (V <sub>AS</sub> +3.5V)-35V<br>V <sub>SYNC</sub> typ.: (V <sub>AS</sub> +4.6V)-35V | 2×PSI5 (V1.3)                   | SPI<br>(3.3 V or 5 V) | <ul> <li>Max. 8 sensors</li> <li>Bidirectional communication</li> <li>Bosch AB, EM and Open SPI protocol</li> <li>Integrated monitoring of voltages and overtemperature</li> <li>Integrated diagnosis</li> </ul> | -40                       | 150                        | LQFP32,<br>QFN36<br>(on request) |



## Advanced driver assistance systems



### System basis ICs

Our system basis ICs for ADAS applications provide an innovative, configurable power management architecture to minimize total system costs.

### SUPER-LOW NOISE POWER SUPPLY FOR MONOLITHIC MICROWAVE INTEGRATED CIRCUIT (MMIC) RADAR TRANSCEIVERS

| Application                       | Product | V <sub>DD</sub> typ.<br>[V] | Interfaces  | Supply voltages                                                                                                                                                                                                                                                                                 | Outputs                                                                                                                  | Features                                                                                                                                                                                                                                                                                           | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package     |
|-----------------------------------|---------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------|
| System basis IC<br>for radar ECUs | CS520   | 14/28                       | SPI, CAN FD | <ul> <li>3.3V/1.8A SMPS for<br/>microcontroller and<br/>bus transceivers</li> <li>3.3V/1.8A low noise<br/>LR for MMIC analog<br/>radar components</li> <li>3.3V/0.9A LR for<br/>MMIC digital radar<br/>components</li> <li>5V/100 mA switch<br/>for partial network<br/>transceivers</li> </ul> | <ul> <li>Reset</li> <li>Battery voltage<br/>monitoring<br/>switch</li> <li>Battery voltage<br/>drop detection</li> </ul> | <ul> <li>Designed for passenger car and commercial vehicle applications</li> <li>Suitable for systems up to ASIL C</li> <li>Voltage monitoring and overcurrent protection for all regulators</li> <li>SPI interface for control and diagnostics</li> <li>CAN FD driver (up to 5 Mbit/s)</li> </ul> | -40                        | 150                        | TQFP64-EPAD |

## Advanced driver assistance systems

### System basis ICs

### POWER SUPPLY FOR ADVANCED DRIVER ASSISTANCE SYSTEMS (ADAS), CAMERA OR LIDAR SYSTEMS

| Application                         | Product            | V <sub>DD</sub> typ.<br>[V] | Interfaces | Supply voltages                                                                                                                                                                                                                                      | Outputs | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package |
|-------------------------------------|--------------------|-----------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------|
| System basis IC<br>for ADAS systems | CS600<br>(planned) | 14/28                       | SPI 32 bit | <ul> <li>2×0.7V-3.825V<br/>(programmable) /<br/>2A (SMPS)</li> <li>2×0.7V-3.825V<br/>(programmable) /<br/>1A (SMPS)</li> <li>2×0.7V-3.825V<br/>(programmable)<br/>driver for ext. power<br/>stages</li> <li>4×0.7-3.825V/<br/>300 mA/LDO)</li> </ul> | ► GPIO  | <ul> <li>10 programmable rails, possibility<br/>for multi phase configuration</li> <li>Programmable power-up and -down<br/>sequencing between all supply rails,<br/>incuding optional external sync</li> <li>Temperature monitoring and over-<br/>temperature shutdown</li> <li>Voltage monitoring (UV, OV) with<br/>configurable thresholds</li> <li>On-chip general purpose ADC (12 bit,<br/>maximum 1MSPS) for monitoring ex-<br/>ternal voltages on 4 input pins with<br/>up to 7 channels</li> <li>OTP memory for device configuration<br/>of several functions</li> <li>Functional safety on-chip functions<br/>allowing to realize ISO26262 ASIL-C/D<br/>on ECU system level</li> <li>AEC-Q100 automotive qualified,<br/>grade 1</li> </ul> | -40                        | 150                        | QFN-MR  |





### System basis ICs, power supply ICs

Bosch system ICs for engine management systems combine the power supply with additional peripheral functions. Virtually all current microcontrollers are supported.

### POWER SUPPLY WITH INTEGRATED CONTROL AND I/O FUNCTIONS, RPM SENSOR SUPPLIES AND INTERFACES

| Application        | Product | V <sub>DD</sub> typ.<br>[V] | Inter-<br>faces                                 | Supply voltages                                                                                                                                             | Inputs                                                                       | Outputs                                            | Features                                                                                                                                                                                                                          | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                           |
|--------------------|---------|-----------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-----------------------------------|
| System basis<br>IC | CY327   | 14                          | SPI,<br>16 bit<br>(3.3 V)<br>1 × CAN<br>1 × LIN | <ul> <li>System: 5V/450 mA<br/>3.3V/300 mA,<br/>5 or 3.3V/250 mA</li> <li>Core supply<br/>0.9-1.525V/1.2A<br/>switch-mode</li> <li>Sensors: 3×5V</li> </ul> | <ul> <li>Ignition</li> <li>3 wake up pins</li> <li>Wake up on CAN</li> </ul> | <ul> <li>Main relay<br/>control: 1×LSPS</li> </ul> | <ul> <li>Buck/boost pre-regulator<br/>switched mode supply for µC<br/>core voltage</li> <li>Advanced 3-level watchdog<br/>operating range 3V - 40V</li> <li>Stop counter functions</li> <li>Very low quiescent current</li> </ul> | -40                        | 150                        | TQFP64-EPAD<br>or<br>TQFP100-EPAD |
| System basis<br>IC | CY320   | 14                          | 1×CAN<br>1×ISO<br>SPI,<br>16bit<br>(5V)         | <ul> <li>System: 5V, 3.3V,<br/>2.6V, 1.5V</li> <li>Sensors: 3×3.3/5V<br/>progammable</li> </ul>                                                             | <ul><li>Ignition</li><li>Wake up</li></ul>                                   | <ul> <li>Main relay<br/>control: 1×LSPS</li> </ul> | <ul> <li>2 pre-regulator modes<br/>(switched, linear)</li> <li>Advanced 3-level watchdog</li> <li>µC-reset and system reset</li> <li>Stop counter functions</li> </ul>                                                            | -40                        | 150                        | PSO36                             |



### Low-side power switches

Robust power stages for driving electric loads around the engine: injectors, igniters and other peripheral devices.

### POWER STAGE ARRAYS WITH INTEGRATED MONITORING FUNCTIONS

| Application                                            | Product | V <sub>bat</sub> typ.<br>[V] | V <sub>DD</sub> typ.<br>[V] | Interfaces     | Inputs                                                 | Outputs                                                                                                                                                                                                                                                                                                                                       | Features                                                                                                                                                                                                                                                                                                                                                                                    | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package      |
|--------------------------------------------------------|---------|------------------------------|-----------------------------|----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------|
| 14 channel<br>low-side<br>power switch<br>and H bridge | CJ970   |                              | 14                          | MSC            | 4×H bridge<br>control                                  | $6 \times 350 \text{ m}\Omega/3.6 \text{ A}/55 \text{ V}$<br>$2 \times 720 \text{ m}\Omega/2.2 \text{ A}/55 \text{ V}$<br>$6 \times 2.4 \Omega/0.6 \text{ A}/55 \text{ V}$<br>$4 \times \text{HSS} 5 \text{ V}/20 \text{ mA}$<br>(ignition driver)<br>$4 \times \text{HS/LS}$ combined<br>MOSFET driver<br>$4 \times \text{LS}$ MOSFET driver | <ul> <li>Two voltage monitors for<br/>system supplies</li> <li>In H bridge configuration, bridge is<br/>controlled by dedicated pins directly</li> <li>Power stages protected against SCB</li> <li>Current limit or shutdown on<br/>overcurrent</li> <li>Diagnosis: OL, SCG, SCB and<br/>OTW for each powerstage</li> <li>Internal power stages can be<br/>connected in parallel</li> </ul> | -40                        | 150                        | TQFP100-EPAD |
| 8-fold<br>low-side<br>power switch                     | CJ960   | 14                           |                             | SPI,<br>μs bus |                                                        | 4×3.0A/230mΩ/55V<br>2×1.0A/700mΩ/55V<br>2×1.0A/550mΩ/55V                                                                                                                                                                                                                                                                                      | <ul> <li>Diagnosis: OL, SCG, SCB and OT</li> <li>Flexible control by MSC or SPI</li> <li>Multiple safety features</li> <li>Separate shutdown path for OUT1 - 4</li> <li>Current limit or shutdown on overcurrent</li> </ul>                                                                                                                                                                 | -40                        | 140                        | TQFP64-EPAD  |
| 18-fold<br>low-side<br>power switch                    | CJ950   | 14                           | 5                           | µs bus         | TTL/CMOS<br>logic,<br>withstands<br>36V<br>permanently | 4×0.6A/1,800mΩ/55V<br>10×2.2A/500mΩ/55V<br>2×3A/260mΩ/55V<br>2×8A/150mΩ/55V                                                                                                                                                                                                                                                                   | <ul> <li>Diagnosis: OL, SCG, SCB and OT</li> <li>5V monitoring</li> <li>2<sup>nd</sup> independent shut down path</li> <li>2×lambda sensor heater</li> </ul>                                                                                                                                                                                                                                | -40                        | 150                        | PSO36        |



### Ignition stage drivers

Efficient combustion requires a strong ignition spark at the spark plug. Ignition stage drivers convert the microcontroller's output signal in a driver current for the ignition coil.

### INVERTING DRIVER FOR EXTERNAL IGNITION STAGES IN 4 CYLINDER ENGINES

| Application                                             | Product | V <sub>DD</sub> typ.<br>[V] | Channels | Interfaces | Features                                                                                  | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                |
|---------------------------------------------------------|---------|-----------------------------|----------|------------|-------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------|
| 4-channel inverting driver for external ignition stages | CK240   | 5                           | 4        | SPI        | <ul> <li>Short-circuit protection</li> <li>Diagnosis</li> <li>Wiring diagnosis</li> </ul> | -40                        | 150                        | Bare die or<br>SOIC16w |



### Oxygen sensor interfaces

The oxygen sensor (or lambda sensor) interface IC permanently controls the probe for precise operation and provides

the sensor's readings to the microcontroller within the engine control unit.

### OXYGEN SENSOR CONTROL AND READOUT WITH INTEGRATED MONITORING FUNCTIONS

| Application                                                       | Product | V <sub>bat</sub> typ.<br>[V] | V <sub>DD</sub> typ.<br>[V] | Inputs                   | Interfaces | Features                                                                                                                                                                                                                                                                                                                                             | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                              |
|-------------------------------------------------------------------|---------|------------------------------|-----------------------------|--------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------|
| Oxygen sensor control<br>for Bosch, NTK & Denso<br>oxygen sensors | CJ135F  | 14                           | 3/5                         | Oxygen sensor<br>signals | SPI        | <ul> <li>Lambda measurement</li> <li>Probe temperature evaluation</li> <li>SPI programmable controls</li> <li>Active blackening control and protection</li> <li>Analog output current</li> <li>Diagnostic features</li> <li>Supports LSU5.2 / 4.9 / ADV (Bosch)</li> <li>Supports ZFAS-U2 / U3 (NTK)</li> <li>Supports Plus 5 / 6 (Denso)</li> </ul> | -40                        | 150                        | TQFP32-EPAD,<br>QFN36<br>(on demand) |
| Bosch oxygen sensor<br>(LSU)                                      | CJ125   | 14                           | 5                           | Oxygen sensor<br>signals | SPI        | <ul> <li>Lambda measurement</li> <li>Probe temperature measurement</li> <li>Programmable reference pump current</li> <li>Diagnostics</li> <li>Supports LSU5.2 / 4.9 / ADV / 4.2 (Bosch)</li> </ul>                                                                                                                                                   | -40                        | 150                        | SOIC24w,<br>LQFP32                   |



### B6 bridges

Efficient one-chip solution for driving 3 phase BLDC motors.

### SMART BRIDGE FOR THROTTLE VALVE DRIVES, PUMPS AND OTHER MOTOR-DRIVEN ACTUATORS

| Application                                   | Product | V <sub>bat</sub> typ.<br>[V] | Interfaces         | Features                                                                                                                                                                                                                                                                                                          | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package |
|-----------------------------------------------|---------|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------|
| Monolithic B6 bridge<br>for motors up to 60 W | CJ260   | 4.5-28                       | SPI, direct inputs | <ul> <li>R<sub>DSon max</sub>: 540 mΩ (@3A<sub>RMS</sub>, 150 °C)</li> <li>I<sub>out max</sub>: 3A<sub>RMS</sub></li> <li>f<sub>PWM max</sub>: 20 kHz</li> <li>Current limiter function</li> <li>Extensive protection features</li> <li>Diagnosis functions</li> <li>Suitable for systems up to ASIL-B</li> </ul> | -40                        | 150                        | PSSO36  |

## Transmission control systems

### System basis ICs

In transmission control systems, the system basis chipset provides the system power, disables the starter in case of gearbox malfunction and ensures proper system function by various monitoring routines. Current regulators set the currents for magnetic oil valves rapidly and precisely to the desired value – crucial for fast and smooth gear shifting.

### 2-CHIP CONCEPT FOR HIGH SYSTEM SAFETY: POWER SUPPLY, STARTER RELAIS CONTROL AND VARIOUS I/O

| Application                                    | Product        | V <sub>DD</sub> typ.<br>[V] | Interfaces          | Supply<br>voltages    | Inputs                                                                                              | Outputs                                                                                                                | Features                                                                                                                                                                                                                                                                                                                                                                          | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                                                        |
|------------------------------------------------|----------------|-----------------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------------------------------------------|
| Safety IC for<br>transmission<br>control units | CG135          | 14                          | SPI (3.3V)          | UBAT                  | <ul> <li>3×voltage<br/>monitoring<br/>channels</li> <li>3×speed<br/>sensor<br/>interface</li> </ul> | <ul> <li>System reset</li> <li>Power control</li> </ul>                                                                | <ul> <li>Complies with ISO26262:2011 for<br/>ASIL-D capability in combination with<br/>system basis ICs, solenoid drivers and<br/>high-side switches</li> <li>Flexible parameter configuration</li> <li>Diagnostic capability</li> </ul>                                                                                                                                          | -40                        | 150                        | TQFP32-EPAD<br>QFN36 (on<br>demand)                            |
| System basis<br>IC combination                 | CG124<br>CG130 | 14                          | ISO/LIN<br>SPI (5V) | 3.3V, 5V,<br>9V, UBAT | <ul> <li>3×speed<br/>sensor</li> <li>4×position<br/>sensor</li> <li>Wake up</li> </ul>              | <ul> <li>3×driver for HS<br/>switches</li> <li>Starter disable</li> <li>Startup, reset,<br/>shutdown for µC</li> </ul> | <ul> <li>Ideally suited for Renesas SH7</li> <li>Reverse polarity protection for HS switches</li> <li>Reverse polarity protection for system supply</li> <li>HS switch for starter disable</li> <li>2-fold voltage monitoring</li> <li>Question and answer watchdog</li> <li>Periphery clock monitoring</li> <li>16 channel multiplexer for diagnosis: OL, SCG and SCB</li> </ul> | -40                        | 150                        | TQFP64-EPAD<br>(CG124) and<br>LQFP32<br>(CG130)<br>or bare die |



## Transmission control systems



### Current regulators

High precision current regulators for driving hydraulic valves in automatic transmissions, allowing for fast gear changes.

### PRECISE CONTROL OF OIL PRESSURE VALVES IN HYDRAULIC SYSTEMS

| Application                                                                                              | Product | V <sub>bat</sub> typ.<br>[V] | V <sub>DD</sub> typ.<br>[V] | Interfaces            | Outputs                     | Features                                                                                                                                                                                                                                                                                         | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package                  |
|----------------------------------------------------------------------------------------------------------|---------|------------------------------|-----------------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------|
| Dual-channel fully<br>integrated current<br>regulator for inductive<br>loads for low-side<br>application | CG208   | 14                           | 5                           | 1×SPI<br>(3.3V or 5V) | 2×regulated<br>load current | <ul> <li>Power switch, shunt and free wheeling diode<br/>integrated current regulation range: 01,200mA</li> <li>Accuracy &lt; 1%</li> <li>Dither function</li> <li>Overcurrent protection</li> <li>Overtemperature protection</li> <li>SPI controlled regulation loop characteristics</li> </ul> | -40                        | 150                        | Bare die,<br>TQFP44-EPAD |

## Pyro fuse systems



### Pyro fuse drivers

In case of an accident, pyro fuses physically separate the HV battery from the vehicle's power lines. As part of the battery management system, pyro fuse drivers can trigger several pyro fuses independently of each other.

### PYRO FUSE DRIVERS WITH SPI CONTROL, NUMEROUS SAFETY AND DIAGNOSIS FEATURES

| Application                   | Product | μC<br>supply<br>[V] | V <sub>vzP</sub> typ.<br>[V] | HSS<br>supply                 | Interfaces                           | Firing<br>loops       | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package     |
|-------------------------------|---------|---------------------|------------------------------|-------------------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------|
| 4 channel pyro<br>fuse driver | CG985   | n.a.                | 14                           | 25 or 33                      | SPI, 16-bit<br>(3.3 V or 4.9 V)      | 4 (2 firing<br>modes) | <ul> <li>Sophisticated safety concept</li> <li>Monitoring of voltages, power stage and firing loop diagnosis, STB and STG diagnosis, squib resistance measurement</li> <li>4-bit firing current counter per firing loop</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -40                        | 150                        | LQFP44      |
| 4 channel pyro<br>fuse driver | CG912   | 3.3                 | 14                           | 23.75 or 33<br>(programmable) | SPI, 32-bit<br>(3.3V),<br>K-Line/LIN | 4 (5 firing<br>modes) | <ul> <li>Power supply capabilities:         <ul> <li>3.3V (microcontroller, onboard sensors)</li> <li>5V (CAN)</li> <li>6.7V (peripheral sensors)</li> <li>23.75/33V (energy reserve &amp; pyro fuse firing)</li> </ul> </li> <li>Enhanced sophisticated safety concept (incl. sensor data monitoring)</li> <li>Watchdog for microcontroller</li> <li>Fully automated diagnosis: Monitoring of voltages (incl. VHx) and overtemperature, SVR diagnosis, CER diagnosis, power stage and squib diagnosis, cross-coupling diagnosis, connector capacitor diagnosis, STB and STG diagnosis</li> <li>2 independent 7-bit firing current counters per channel (max. time: 3.2 ms)</li> <li>PWM controlled GPIO</li> </ul> | -40                        | 150                        | TQFP64-EPAD |

## Pyro fuse systems

## 4

### Pyro fuse drivers

### PYRO FUSE DRIVERS WITH SPI CONTROL, NUMEROUS SAFETY AND DIAGNOSIS FEATURES

| Application                   | Product | μC<br>supply<br>[V] | V <sub>vzP</sub> typ.<br>[V] | HSS<br>supply                 | Interfaces                            | Firing<br>loops       | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sub>jmin</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package      |
|-------------------------------|---------|---------------------|------------------------------|-------------------------------|---------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|--------------|
| 8 channel pyro<br>fuse driver | CG902   | 3.3                 | 14                           | 23.75 or 33<br>(programmable) | SPI, 32 bit<br>(3.3 V),<br>K-Line/LIN | 8 (5 firing<br>modes) | <ul> <li>Power supply capabilities:         <ul> <li>3.3V, 1.3V (microcontroller, onboard sensors)</li> <li>5V (CAN)</li> <li>6.7V (peripheral sensors)</li> <li>23.75/33V (energy reserve &amp; pyro fuse firing)</li> </ul> </li> <li>Enhanced sophisticated safety concept (incl. sensor data monitoring)</li> <li>Watchdog for microcontroller</li> <li>Fully automated diagnosis: Monitoring of voltages (incl. VHx) and overtemperature, SVR diagnosis, CER diagnosis, power stage and squib diagnosis, cross-coupling diagnosis, connector capacitor diagnosis, STB and STG diagnosis</li> <li>2 independent 7-bit firing current counters per channel (max. time: 3.2 ms)</li> <li>PWM controlled GPIO</li> </ul> | -40                       | 150                        | TQFP128-EPAC |

## Alternator electronics



### Alternator regulators

By adjusting the rotor current, Bosch alternator regulators set the output voltage to a constant level, regardless of the actual engine rotation speed. Regulators with interfaces allow for interaction with the engine control, i.e. provide status information, set the output voltage to a desired level or switch off the alternator during acceleration.

### ALTERNATOR OUTPUT VOLTAGE CONTROL, PROGRAMMABLE FOR CUSTOMER SPECIFIC ALTERNATOR BEHAVIOUR

| Application                    | Product   | Interfaces   | Outputs            | Features                                                                                                         | T <sub>j min</sub><br>[°C] | T <sub>j max</sub><br>[°C] | Package    |
|--------------------------------|-----------|--------------|--------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------|
| Regulator for 14V alternators  | CR719     | n.a.         | Excitation current | <ul> <li>Autonomous regulator concept</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | MultiWatt8 |
| Regulator for 14V alternators  | CR724     | n.a.         | Excitation current | <ul> <li>Autonomous regulator concept</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | MultiWatt8 |
| Regulator for 14V alternators  | CR665     | LIN 1.3, 2.1 | Excitation current | <ul> <li>LIN control functions acc. to VDA spec.</li> <li>Programmable</li> <li>Smart load management</li> </ul> | -40                        | 175                        | TO220-5    |
| Regulator for 14V alternators  | CR636     | PWM          | Excitation current | <ul><li>PWM controlled output</li><li>Smart load management</li></ul>                                            | -40                        | 175                        | MultiWatt8 |
| Regulator for 14V alternators  | CR760     | C-Terminal   | Excitation current | <ul> <li>C-Terminal controlled output</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | MultiWatt8 |
| Regulator for 28V alternators  | CR298     | n.a.         | Excitation current | <ul> <li>Autonomous regulator concept</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | MultiWatt8 |
| Regulator for 28 V alternators | CR291-294 | n.a.         | Excitation current | <ul> <li>Autonomous regulator concept</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | Bare die   |
| Regulator for 28V alternators  | CR250     | LIN 1.3      | Excitation current | <ul> <li>LIN controlled output</li> <li>Programmable</li> <li>Smart load management</li> </ul>                   | -40                        | 175                        | MultiWatt8 |
| Regulator for 28V alternators  | CR260     | C-Terminal   | Excitation current | <ul> <li>C-Terminal controlled output</li> <li>Smart load management</li> </ul>                                  | -40                        | 175                        | MultiWatt8 |

## Electric drive and power conversion systems



### Silicon carbide power switches

Bosch SiC MOSFETs reduce conduction and switching losses, allow for higher switching frequencies and are extremely robust. They are specifically designed for drive electronics or power conversion systems in (hybrid) electric vehicles.

#### SILICON CARBIDE AUTOMOTIVE POWER MOSFETS 1,200V

| Туре             | Product        | V <sub>DS</sub> [V] | I <sub>DS</sub> [A] | $R_{DSon}$ [m $\Omega$ ] | T <sub>j min</sub> [°C] | T <sub>j max</sub> [°C] | Package |
|------------------|----------------|---------------------|---------------------|--------------------------|-------------------------|-------------------------|---------|
| SiC power switch | BT1M1200025T3A | 1,200               | 75                  | 25                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M1200035T3A | 1,200               | 55                  | 35                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M1200060T3A | 1,200               | 30                  | 60                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M1200025D7A | 1,200               | 75                  | 25                       | -40                     | 175                     | TO263-7 |
| SiC power switch | BT1M1200035D7A | 1,200               | 55                  | 35                       | -40                     | 175                     | TO263-7 |
| SiC power switch | BT1M1200060D7A | 1,200               | 30                  | 60                       | -40                     | 175                     | TO263-7 |

Bare-die versions on request

#### SILICON CARBIDE AUTOMOTIVE POWER MOSFETS 750V

| Туре             | Product        | V <sub>DS</sub> [V] | I <sub>DS</sub> [A] | $R_{DSon}$ [m $\Omega$ ] | T <sub>j min</sub> [°C] | T <sub>j max</sub> [°C] | Package |
|------------------|----------------|---------------------|---------------------|--------------------------|-------------------------|-------------------------|---------|
| SiC power switch | BT1M0750020T3A | 750                 | 90                  | 20                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M0750025T3A | 750                 | 60                  | 25                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M0750040T3A | 750                 | 30                  | 40                       | -40                     | 175                     | TO247-3 |
| SiC power switch | BT1M0750020D7A | 750                 | 90                  | 20                       | -40                     | 175                     | TO263-7 |
| SiC power switch | BT1M0750025D7A | 750                 | 60                  | 25                       | -40                     | 175                     | TO263-7 |
| SiC power switch | BT1M0750040D7A | 750                 | 30                  | 40                       | -40                     | 175                     | TO263-7 |

Bare-die versions on request

## IP modules

### for networking applications



#### M\_CAN AND M\_TTCAN IP MODULE

The M\_CAN is a CAN IP module that can be realized as a standalone device, as part of an ASIC or on an FPGA. It performs communication according to ISO11898-1:2015. It supports Classical CAN and CAN FD (CAN with Flexible Data-rate). Additional transceiver hardware is required for connection to the physical layer.

The message storage is intended to be a single or dual-ported Message RAM outside of the module. It is connected to the M\_CAN via the Generic Master Interface. Depending on the chosen integration, multiple M\_CAN controllers may share the same Message RAM. The Host CPU is connected via the 32-bit Generic Slave Interface.

#### C\_CAN FD8 IP MODULE

The C\_CAN FD8 is a CAN IP module that can be implemented as a standalone device, as part of an ASIC. It is software compatible to the well known C\_CAN IP module. The C\_CAN FD8 performs communication according to ISO11898-1:2015. It supports classical CAN and CAN FD (CAN with Flexible Data-rate) communication with up to 8 byte data fields. For connection to the physical layer additional transceiver hardware is required. For communication on a CAN network up to 32 Message Objects can be configured. The Message Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message RAM. The register set of the C\_CAN FD8 can be accessed directly by an external CPU via the module interface. These registers are used to control/configure the CAN Core and the Message Handler and to access the Message RAM. The Module Interfaces delivered with the C\_CAN FD8 module can easily be replaced by a customized module interface adapted to the needs of the user.

#### CAN FD

CAN FD (CAN with Flexible Data-rate) was introduced by Bosch in 2012 to overcome the Classical CAN's bit rate limitation to 1 Mbps and to expand the number of data bytes per CAN frame from up to 8 to up to 64, thereby closing the gap between Classical CAN and other protocols. This is achieved by a modified CAN frame format where the bit rate can be switched to faster value inside the CAN frame and by a new data length coding. CAN FD is standardized as ISO11898-1:2015. CAN FD protocol controllers are also able to perform Classical CAN communication.

#### CAN FD PROTOCOL

The CAN FD Protocol is developed by Robert Bosch GmbH and is patented. In addition to the CAN IP modules offered by Bosch, a CAN FD Protocol License is required. The CAN FD Protocol License is also required for self-developed CAN modules or for CAN modules purchased from other vendors.

#### VHDL REFERENCE CAN

The VHDL Reference CAN is intended for semiconductor designers/manufacturers who want to build their own implementation of a Classical CAN or CAN FD device using VHDL as hardware description language.

#### TSU IP MODULE - TIMESTAMPING UNIT FOR M\_CAN

The timestamping unit supplies IP module with hardware timestamps according to CiA 603 and AUTOSAR specification.

#### DMU IP MODULE – DIRECT MEMORY ACCESS UNIT FOR M CAN

The DMU supports DMA transfers between M\_CAN message RAM and system memory.

## IP modules

### for timer applications



#### GENERIC TIMER MODULE (GTM)

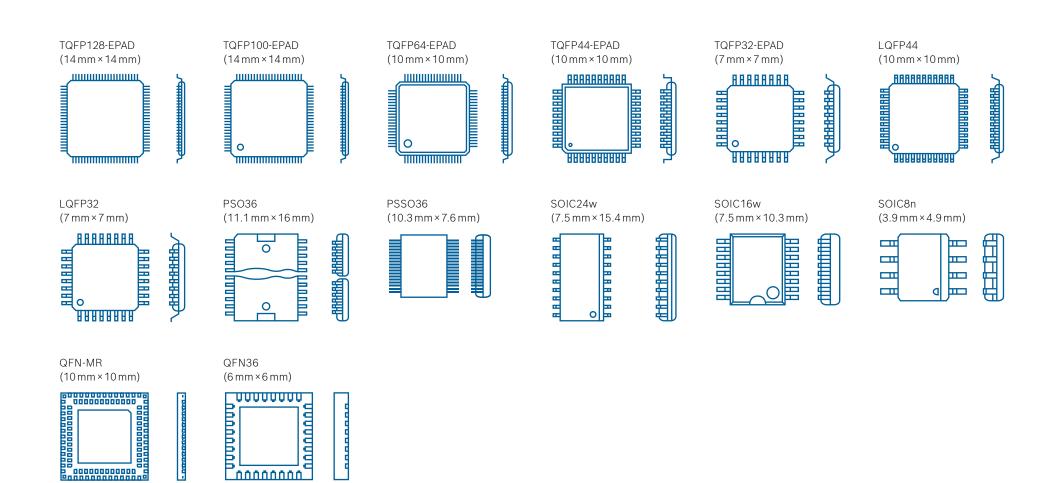
The GTM IP module forms a generic timer platform for complex applications in the automotive industry like powertrain, power steering, chassis and transmission control. To serve these different application domains, the GTM provides a wide range of timer functions like:

- Counters (free running and resettable)
- ► Multi-action capture/compare PWM input
- ► Complex PWM output function
- Duty-cycle measurement
- ► Global time bases
- Complex angle clock mechanism for powertrain applications
- ► Input signal filtering
- Internal RISC-like programmable cores for data processing and complex output sequence generation

The GTM IP is designed to offer flexible solutions for different application domains and for different application classes within one specific application domain. The IP is designed to run with minimal CPU interaction and to unload the CPU from handling interrupt service requests as much as possible.

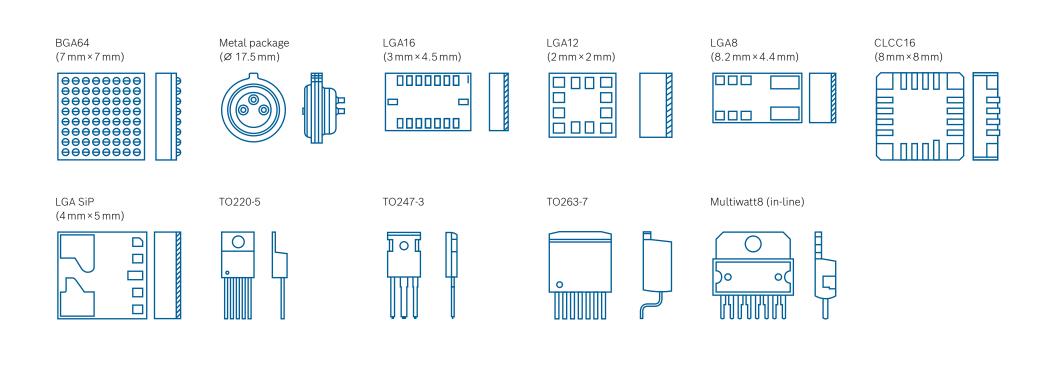
Generic interfaces and the hierarchical system architecture make the GTM an ideal solution as IP core for various microcontroller architectures.

## Abbreviations


### As used in data tables

| Cer                | Energy reserve capacitor        |
|--------------------|---------------------------------|
| HS                 | High side switch                |
| HSPS               | High side power switch          |
| LS                 | Low side switch                 |
| LSPS               | Low side power switch           |
| PAS                | Peripheral airbag sensor        |
| PSI5               | Peripheral sensor interface bus |
| SPI                | Serial peripheral interface     |
| V <sub>BAT</sub>   | Battery voltage                 |
| V <sub>DD</sub>    | System supply                   |
| V <sub>PASOx</sub> | Sensor supply voltage           |
| V <sub>VER</sub>   | Energy reserve voltage          |
| V <sub>VZP</sub>   | Supply voltage                  |

## Packages


### Body dimensions

\_\_\_\_\_\_\_



## Packages

### Body dimensions



Notes 37

### Contact

#### EUROPE

Robert Bosch GmbH Component Sales Postfach 1342 72703 Reutlingen Germany

bosch.semiconductors@de.bosch.com www.bosch-semiconductors.com www.bosch-sensors.com

#### KOREA

Robert Bosch Korea Component Sales 298 Bojeong-dong, Giheung-gu Yongin-si, Gyeonggi-do Korea, 446-850

bosch.semiconductors@kr.bosch.com

### USA

USA

U.S.A.

Robert Bosch LLC

**Component Sales** 

384 Santa Trinita Ave

Sunnyvale, CA 94085

Robert Bosch LLC Component Sales 15000 Haggerty Road Plymouth, MI 48170 U.S.A.

bosch.semiconductors@us.bosch.com

bosch.semiconductors@us.bosch.com

#### JAPAN

Bosch Corporation Component Sales 3-6-7, Shibuya, Shibuya-ku Tokyo 150-8360 Japan

bosch.semiconductors@de.bosch.com

### INDIA

Bosch Automotive Electronics India Pvt Ltd. Component Sales Building 703, Naganathapura Electronic City P.O., Bangalore-560100 India

bosch.semiconductors@de.bosch.com

### CHINA

Bosch (China) Investment Ltd. Component Sales 333 Fuquan (N.) Road Shanghai 200335 P.R. China

bosch.semiconductors@cn.bosch.com www.bosch-semiconductors.cn

#### TAIWAN

Robert Bosch Taiwan Co. Ltd. Component Sales 6F, No.90, Jian Guo N. Road, Sec.1 Taipei 10491 Taiwan

bosch.semiconductors@de.bosch.com

**Robert Bosch GmbH** | PO 106050 | 70049 Stuttgart | Germany | www.bosch-semiconductors.com | www.bosch-mobility-solutions.com | Printed in Germany 2 920 00P 1RV © Robert Bosch GmbH 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.