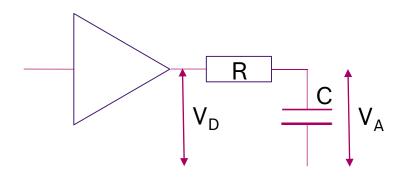


IDEAS AND CONCEPTS FOR SIGNAL GENERATION AND PROCESSING WITH GTM

GTM

- "Analog" signal generation
- Closed loop control
- ► FIR filter implementation with MCS


Signal generation and processing with GTM "Analog" Signal Generation

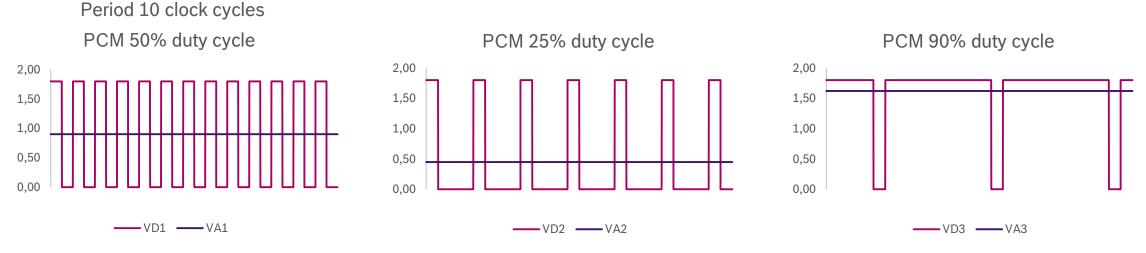
- Nearly everything operates digital
 - Most micro controllers have no DA signal conversion capabilities
 - What can be done if applications need an amount of analog signals
 - Constant analog voltage
 - Periodic signals (sine wave, saw tooth ..)
- ► Can a GTM generated "analog" signal be an alternative

Possible solution:

► Hookup the digital output of a PCM modulated signal to a low pass filter

3 Automotive Electronics | AE/EID5 | 10/5/201

© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights



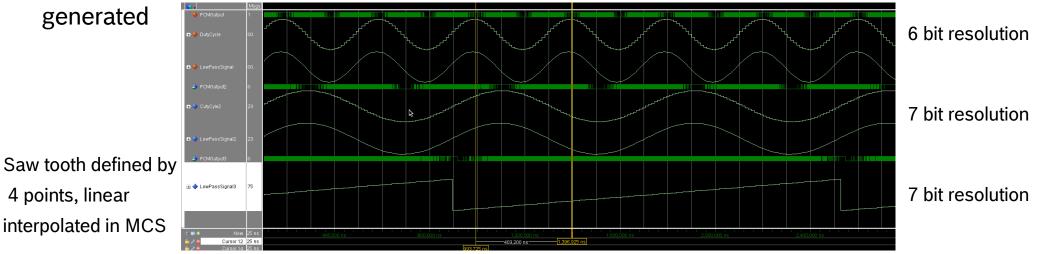
Signal generation and processing with GTM "Analog" Signal Generation

Ripple of V_A depends on time constant T=R * C

Choose PCM clock period $t_{PCM} << T$ to adjust ripple to application needs

PCM clock = 100 MHz

7 Bit PCM: period 1,28 us ; Duty cycle can be adjusted in 128 steps 10 Bit PCM: period 10,24 us ; Duty cycle can be adjusted in 1024 steps



Signal generation and processing with GTM "Analog" Signal Generation

ROSCI

- Any complex signal waveforms can be programmed by changing the PCM duty cycle in each period Possible with:
 - ► PSM (ringbuffer) ARU ATOM
 - ► MCS (A)TOM
 - ► CPU/DMA A(TOM)
- ► Generation of sine wave, saw tooth, even nonperiodic analog voltage characteristics can be

5 Automotive Electronics | AE/EID5 | 10/5/2017

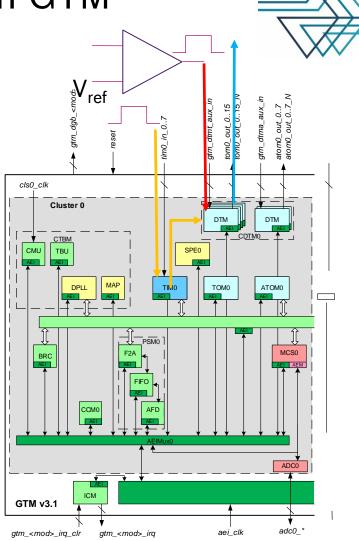
© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- "Analog" signal generation
- Closed loop control
- ► FIR filter implementation with MCS

Signal generation and processing with GTM Closed loop control

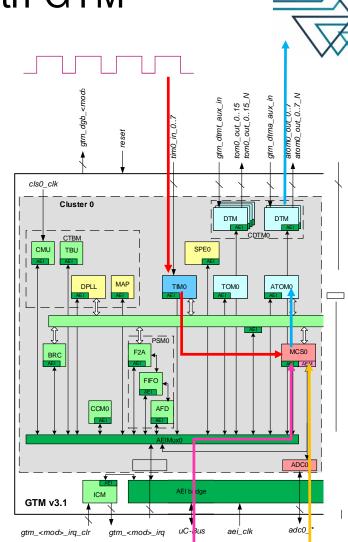
Performed by code executed with a CPU Core on the micro, will need a certain time to react from an input change to an output reaction

Delay times are caused by:


- Code execution
- Read / write latencies for accesses to registers in peripherals
- Interrupt scheduling
- ► Task scheduling by OS
- ► Typical delay times for closed loop control by CPU core : > 10 us
- Decrease delay times by using closed loop control inside GTM Accuracy will increase

Signal generation and processing with GTM Closed loop control

- Direct control of output by onchip comparator using gtm_dtmt_aux_in (red)
 - Tie output to 0 or 1
 - Switch between 2 (A)TOM channels
 Delay time: Combinatoric path (no delay)
- Direct control of output by TIM input (orange)
 - ► Tie output to 0 or 1
 - Switch between 2 (A)TOM channels


Delay time: 3 system clock cycles delay + Filter delay (if enabled)

Signal generation and processing with GTM Closed loop control

- MCS controls the regulation behalf of:
 - Input signal data (red)
 - Edge
 - PWM/Pulse measurement
 - Complex input signal e.g. serial protocol (LIN, SENT, SPI..)
 - Analog input (orange)
 - Measured with onchip ADC (voltage, current, temperature..)
 - Parameters provided by CPU / DMA (purple)
 - Computed by CPU
 - Fetched from Memory (DMA)
 - Received by ext. sensors via uC peripherals: (CAN, SPI, LIN, ..)
 - Algorithm stored in MCS code
 - Parameter sets, Calibration data stored in MCS ram Delay time: depending on complexity of calculations

© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Automotive Electronics | AE/EID5 | 10/5/201

Signal generation and processing with GTM Closed loop control

- ► E.g: MCS running on 200 MHz; target delay time <= 1 us
- How complex can the regulation algorithm be ?
 - MCS operating 8 Channels in round robin mode.
 - target delay time <= 0,1 us: ~ 22 instructions per channel
 - target delay time <= 1 us: ~ 222 instructions per channel
 - MCS operating 1 Channel in accelerated mode.
 - target delay time <= 0,1 us: ~ 200 instructions per channel

- "Analog" signal generation
- Closed loop control
- ► FIR filter implementation with MCS

© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

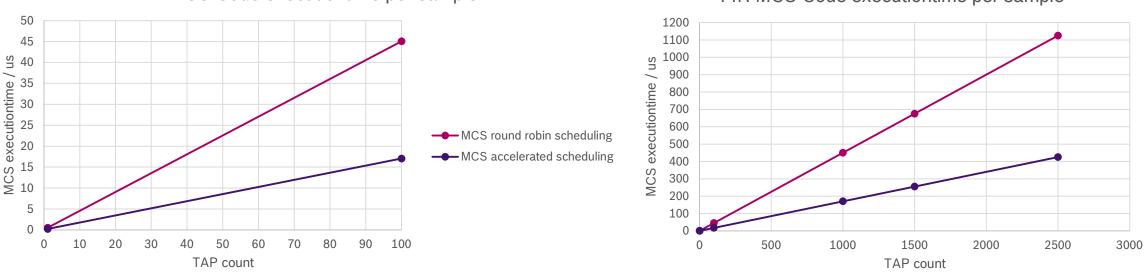
Signal generation and processing with GTM FIR filter implementation

► FIR Filters are commonly used for digital signal processing

$$egin{aligned} y[n] &= b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-N] \ &= \sum_{i=0}^N b_i \cdot x[n-i], \end{aligned}$$

- ► Easy to implement on MCS
- ► MCS code size : 25 words
- MCS data size for coefficients b_i and input delay line x[n-i]
 - MCS standard ram_size : 3072 words ~ max 1500 taps mcfg borrow mode : 5120 words ~ max 2500 taps

```
.org 0x0
   jmp
          fir_init
.org 0x20
x_inp_v: .var 0x0
                            # memory location for input sample x(n)
u nuto vt. .var 0x0
                            # memory location for output sample y(n)
# reserve space for sample delay line
x_vec_v:
   .var 0x0
.org (x_vec_v+4*(tap_len_c-1))
# initialize vector with filter coefficients
h vec v:
.org (h_vec_v+4*tap_len_c)
fir_init:
   movl
          R7, 4*(tap_len_c-2) # initialize delay index
 fir_sample_loop:
   mrd
           R6, x_inp_v
                            # read input sample x
    mrd
          R0, h_vec_v
                            # load coefficient h0
          R0, R6
    mulu
                            # multiply x*h0
   movl
          R5, 4*(tap_len_c-1) # set coeff index to h[tap_len_c-1]
 in mar loopt
          R1, R7, x_vec_v # load delayed sample
   mrdi
          R2, R5, h_vec_v # load coefficient
    medi
          R1, R2
                            # multiply
    տալո
   add
          R0. R1
                            # accumuluate
    sub1 R7, 4
                            # decrement delay index
          STA, N, fir_skip_delay_wrap_1 # branch if no wrap occured
    .ibc
    mov1
          R7, 4*(tap_len_c-2) # reset delay index on wrapping
 ir_skip_delay_wrap_1:
          R5, 4
   subl
                            # decrement coeff index
          STA, Z, fir_mac_loop # branch tap_len_c-1 times to inner MAC loop
    ihe
          R0, y_outp_v # write filtered sample to RAM
R6, R7, x_vec_v # write actual sample to delay line
    mыr
    murri
    mov1
           STA: 0x3
                           ]# rise IRQ
                           # decrement delay index
p delau wrap_2 # branch if no wrap occured
    suh1
           P7 4
    .ibc
           STA, N, fir_skip_delay_wrap_2
          R7, 4*(tap_len_c-2) # reset delay index on wrapping
    mov1
           fir_sample_loop
fir_skip_delay_wrap_2:
                            # force equal sample time for each iteration
   nop
         fir_sample_loop
    imp
```



Signal generation and processing with GTM FIR filter implementation

▶ execution time for a N tap FIR MCS implementation operating 200 MHz

FIR MCS Code executiontime per sample

FIR MCS Code executiontime per sample

5 us

FIR calculation performance in one MCS

- ▶ 8 channels round robin : 8 FIR filters with 10 tap each can be calculated in 5 us
- 1 channel accelerated : 1 FIR filter with 30 tap can be calculated in

© Robert Bosch GmbH 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Signal generation and processing with GTM FIR filter implementation

- Cascading of filters is a usual technique
 - ► A high end GTM with 10 MCS provides 80 MCS channels
 - Via ARU data can be distributed from one MCS to others
 - Complex filters can make use of more than one MCS

Application: Audio signal processing with GTM

Typical data rate: 48 kHz/ 44,1 kHz sample rate 24 Bit samples

- ► N Audio signal input via serial protocol I2S: resources 3*N TIM channels
- ► MCS: audio signal processing (volume, mix, equalize, balance, fade)
 - ► 48 kHz ~ 20 us MCS processing time per sample
 - partioning of distinct functions to individual MCS channels
 - FIR with ~40 taps can be used
- M Audio signal output via serial protocol I2S: resources ~ 2*M ATOM channels

Got you inspired ?

Try it out in your application

