

TASKING VX-toolset for MCS

Kees Tieleman

Product Owner

Detroit, October 10, 2017

tasking.com

AGENDA

- About the company
- Why TASKING GTM-IP MCS toolset
- Features Overview
- Practical Applications of TASKING toolset Hybrid Controls
- Q&A

Altium - TASKING

- Altium does have about 500 employees worldwide
- Altium does close to 100mio revenues

Revenue Growth of 14%

TASKING is the Embedded Software Division within Altium

Altium Global Reach

Sales and Support Centres

San Diego, Boston, Munich, Karlsruhe, Shanghai, Tokyo, Sydney

Research & Development Centres

San Diego, Ukraine, Netherlands, Shanghai, Munich, St. Petersburg

Main Operations Centres

San Diego, Karlsruhe, Shanghai

Network of channel partners

TASKING Key Facts

- 25 Years of experience with dedicated team
- Committed to deliver:
 - High performance and high quality tools
 - Focus on safety and industry standards
 - Tools to help you with automotive and multicore applications
 - This with and worldwide sales and support organization
- Field-proven tools used by various OEM and Tier-1 suppliers.
- In-house developed compiler technology.
- Strong cooperation with Bosch

Automotive SPICE (ASPICE)

- **TASKING** has ASPICE capability level 2 (Automotive **S**oftware **P**rocess **I**mprovement and **C**apability Determination)
- Signifies the development process to provide quality, reliable products

ID	Process name	PA 1.1	PA 2.1	PA 2.2	Capability Level
MAN.3	Project management	F	F	F	2
ENG.4	Software requirements analysis	F	F	F	2
ENG.5	Software design	F	F	F	2
ENG.6	Software construction	F	F	F	2
ENG.7	Software integration Test	F	F	F	2
ENG.8	Software testing	F	F	F	2
SUP.1	Quality assurance	F	F	F	2
SUP.8	Configuration management	F	F	F	2
SUP.9	management	F	F	F	2
SUP.10	Change request management	F	F	F	2

- (N) Not achieved (0 15%)
- (P) Partially achieved (>15% 50%)
- (L) Largely achieved (>50%-85%)
- (F) Fully achieved (>85% 100%).

History of GTM-IP development

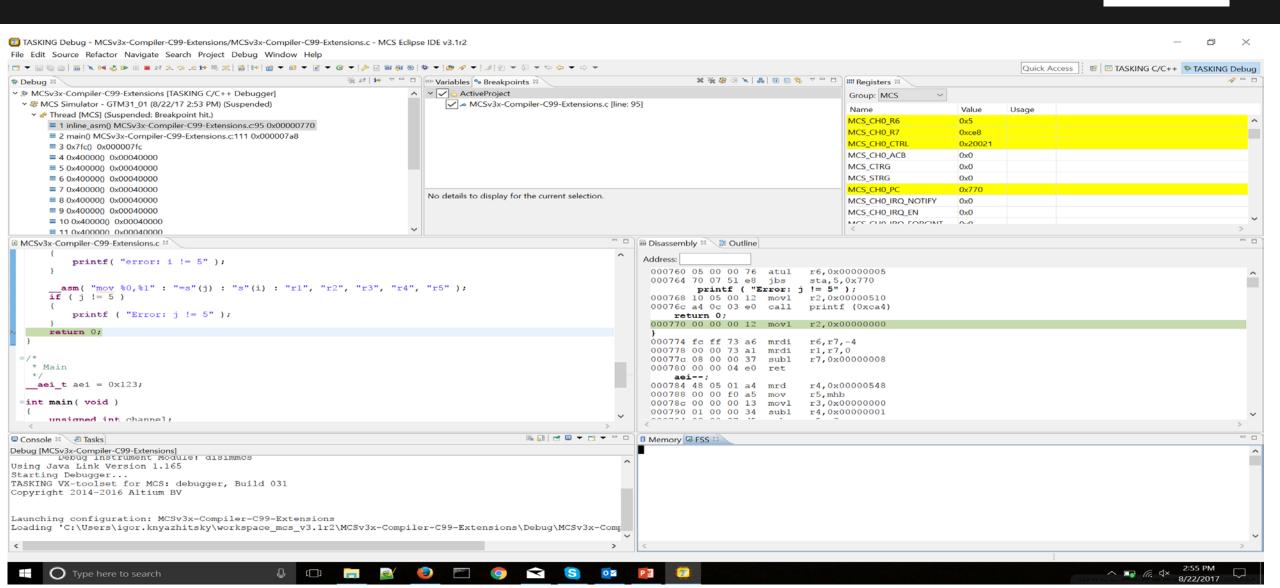
- The instruction set of GTM-IP cores of the first and second generation isn't designed for a C compiler
- However GTM-IP cores of the third generation have been designed with C compliance in mind
- TASKING worked closely together with BOSCH to be able to provide the world first fully compliant C compiler

GTM-IP MCS Compiler Key Benefits

- Fully ISO-C99 compliant C compiler (for GTM 3.0/3.1)
 - Program your applications in C while keeping access to GTM details
- Benefits from our long-year experience in optimization techniques
 - You must be an experienced assembly programmer if you want to beat the compiler
- Can be used as a standalone toolset for further integration with other compilers (C-array image output) or integrated in our TASKING TriCore and RH850 toolsets
 - image to be downloaded from main CPU, global symbols accessible from main CPU
- Allows for the inclusion of (and conversion of) legacy assembler code parts
 - EABI specification included with the product
- Emits information for debuggers in standard DWARF 3 format
- Enhanced safety features through ISO-26262 Safety Kit and the built-in integrated Static Analysis capabilities (MISRA-C, CERT-C)

TASKING_®

- Multiples of 24-bit data types (ints and floats)
 - special types: __int72_t, __uint72_t, _aei_t (32 bit)
- ARU Transfer Intrinsics
 - read, write, non-blocking read, __aru address space qualifier, __aru_t data type
- Bus Master Addressing Intrinsics
 - read, write, __aei address space qualifier, __aei_t data type
- Suspending Wait Instructions Intrinsics
 - using wurmx, wurcx, wuce instructions
- Channel functions
 - __channel function qualifier, channel vector table entry, channel stack initialization


- Extended register set usage option
 - compiler uses registers of one MCS for another
- SFR files to access registers from C code
 - automatically select proper address space (__oreg, __xoreg)
- Advanced multi-core linker (predefined configuration files)
 - e.g. swap and borrow memory, bus mappings, channels
 - e.g. channel vector tables, channel stack initialization
- Instruction set simulator for debugger
 - C and assembly level debugging

TASKING®

TASKING Integrated Debugger for MCS

Practical applications of the TASKING toolset to program the GTM

- Introducing Hybrid Controls
 - Provide hands-on training, ECU design consulting, and software development services for Bosch GTM-IP
 - Develop NXP MC33816/PT2000 microcode, typically for direct injection applications
 - Provide consulting and design services to establish ETAS ASCET driven software development workflows
 - Develop arbitrary complex device drivers for AUTOSAR applications
- Several real-life examples from Hybrid Controls
 - Flywheel simulator using MCS
 - Crank synchronization using MCS and DPLL
 - 8 cylinder multi-pulse fuel injection using MCS and ATOM
 - Angle synchronous ADS sampling using MCS, ATOM, DMA and SDADC