CAN XL

COMPARISONS 1. CAN XL ⇔ CAN FD ⇔ CAN 2. CAN XL ⇔ 10BASE-T1S

AUGUST 2022

COMPARISON

$\mathsf{CAN} \mathsf{XL} \Leftrightarrow \mathsf{FD} \Leftrightarrow \mathsf{CC}$

CAN XL – Next Step in CAN Evolution Comparison of CAN Protocols (Layer 2)

Property	Classical CAN	CAN FD	CAN XL			
Data Field	[0 8 byte]	[0 64 byte]	[1 2048 byte]			
Identifier 11 bit & 29 bit		11 bit & 29 bit	11 bit			
Bus Access	CSMA/CR (Arbitration)	CSMA/CR (Arbitration)	CSMA/CR (Arbitration)			
Acceptance Field	-	-	32 bit (Message ID)			
VCAN ID	-	-	8 bit			
SDU Type	DU Type – –		8 bit			
Bit Stuffing	dynamic	dynamic fixed in CRC	dynamic (in arbitration field) fixed (in data phase)			
CRC 15 bit		17 or 21 bit	PCRC: 13 bit FCRC: 32 bit (outperforms Flexray & Ethernet)			
Error Signaling ON		ON	Software Configurable: ON/OFF			
Transceiver Mode Switching	Not supported	Not supported	Software Configurable: ON/OFF			
Bit rate ratio: data/arb –		Up to approx. 16.	Up to 40 (e.g. 500 kbit/s & 20 Mbit/s)			
Arbitration phase bit rate Data phase bit rate	[0 1 Mbit/s] -	[0 1 Mbit/s] [<arb. bit="" rate=""> 8 Mbit/s]</arb.>	[0 1 Mbit/s] [2x <arb. bit="" rate=""> 20 Mbit/s]</arb.>			

3 Automotive Electronics | AE/PAI-IP | 2022-08-25

CAN XL – Next Step in CAN Evolution New Frame Format

Automotive Electronics | AE/PAI-IP | 2022-08-25

CAN XL – Next Step in CAN Evolution Comparison – Net Bit Rate over Payload Size

CAN XL – Next Step in CAN Evolution Compatibility

Island 1 Island 2 Full compatibility of FD and XL up to 5-8 Mbit/s CAN XL up to 20 Mbit/s CAN FD node ignores CAN FD Same device -CAN XL frames CAN XL CAN XL Mode configured Classic CAN Error Signaling OFF Error Signaling **ON** by software SIC XL SIC XL FD SIC Same device use without use with (Physical Layer) HS CAN mode switching mode switching Approx. max. Bit-Rate 0.5 - 2up to 20 5 - 85-8

> *depending on used Transceiver and topology (\mathbb{H}) BOSCH

Automotive Electronics | AE/PAI-IP | 2022-08-25

© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

6

Layer 2

Layer 1

[Mbit/s]*

(Protocol)

COMPARISON

CAN XL \Leftrightarrow 10BASE-T1S

Comparison of CAN XL & 10BASE-T1S Functionality on Layer 1 and Layer 2

Property	CAN XL	10BASE-T1S			
Data Field	[1 2048 byte] (byte granularity)	[46 1500 byte] (byte granularity)			
Frame Priority	11 bit (Priority Identifier)	3 bit (802.1Q Header PCP [Priority Code Point])			
Bus Access	CSMA/CR (Arbitration)	PLCA (Round Robin) or CSMA/CD (Collision Detection)			
Addressing	32 bit (Acceptance Field), e.g. holds Message ID	2x48 bit (Source/Destination MAC Address)			
Virtual Network Support	8 bit (VCAN ID)	12 bit (VLAN ID)			
Payload Content Indication	8 bit (SDU Type)	16 bit (EtherType)			
CRC	PCRC: 13 bit (HD=6) FCRC: 32 bit (HD=6, outperforms Flexray & Ethernet)	Frame Check Sequence (FCS): 32 bit CRC polynomial with limited performance [link] (HD=4 from 351 byte to 1518 byte frame length)			
Line Coding on Bus	NRZ (non-return-to-zero) + Stuff Bits - dynamic bit stuffing (arbitration field) - fixed bit stuffing (data phase, 1 stuff bit after 10 bit)	4B/5B coding DME (Differential Manchester Encoding)			
Line Coding Overhead	1 out of 11 bit = 1/11 = 9 %	1 out of 5 bit = 1/5 = 20 %			
Frequency (shortest Pulse) on wire	6,1 MHz (81.25 ns) @ 12.3 Mbit/s in Data Phase 8,0 MHz (62.50 ns) @ 16.0 Mbit/s in Data Phase	12.5 MHz (40 ns) due to DME			
Gross Bit Rate on wire	Arbitration phase bit rate: [0 1 Mbit/s] Data phase bit rate: [2x arb. bit rate 20 Mbit/s]	12.5 MHz Symbol Rate (1 symbol = DME encoded bit)			

Automotive Electronics | AE/PAI-IP | 2022-08-25

Comparison of CAN XL & 10BASE-T1S Application Related Properties

Property	CAN XL	10BASE-T1S		
Data Field	[1 2048 byte] (byte granularity)	[46 1500 byte] (byte granularity)		
Time Synchronization	 64 bit time stamping Time sync as specified in CiA603-1 possible Time sync according IEEE 802.1AS likely possible 	Time sync according IEEE 802.1AS possible with some limitation: PDelay not measurable		
Tunneling	Legacy CAN & CAN FDEthernet Tunneling	IEEE1722 provides Classical CAN & CAN FD tunneling IEEE1722 under rework to support CAN XL tunneling		
Software Scalability	New microcontrollers with CAN XL: support software based enabling of features from (500 kbit/s) CC to FD to XL to XL with Transceiver-Mode-Switching (up to 20 Mbit/s)	- (supports only hardware scalability: use a different PHY, e.g. 100BASE-T1)		
Add-on feature Security	CANsec according CiA613-2 (under development)	MACsec		
Add-on feature Fragmentation [QoS]	Fragmentation according CiA613-3 (under development) → Target: increase QoS by shorter frames on the bus	Frame preemption not applicable in Multi-Drop		
Fault Injection [Safety] (only in Bosch IP "X_CAN")	 Allows to intentionally transmit an erroneous frame → Target: validate error detection capability of other nodes during life time; e.g. perform before power off 	-		

Comparison of CAN XL & 10BASE-T1S Net Bit Rate over Payload Size

10 Automotive Electronics | AE/PAI-IP | 2022-08-25

CAN XL – Next Step in CAN Evolution Technical Comparison: CAN XL vs. 10BASE T1S

Feature	CAN XL	10BASE-T1S
Number of nodes (per bus)	2 ≥ 20	28
Bit Rate	1 up to 20* Mbit/s	10 Mbit/s
Network: Stubs	Supports long stubs (e.g. up to 1-3m)	Max. 10 cm
Network: Topology	Complex topologies possible at high bit rates (e.g. double-star)	Daisy-chain (needs 2 connectors due to short stub length)
Transceivers	4 transceiver speed grades (High Speed, FD, SIC, SIC XL) => interoperable, when mode switch not used	One transceiver speed
Transceiver Pins	2 pins (RxD, TxD), same for all transceivers	MII (>10 Pins), or OA 3-pin interface (3 Pins), or MAC-PHY (5 Pins)
Scalability	Scalable: bit rate / network topology / transceiver / # nodes	Scalable: Only # nodes
µC Hardware	New CAN controllers (according CiA610-1) support all 3 flavors of CAN: Classical, FD, XL.	With MII => any transceiver supported (CRS signal often not present!) With Open Alliance 3-pin interface => only 10BASE-T1S transceiver
Migration	Layer 1+2: XL and FD are interoperable up to 5-8 Mbit/s.	Migration done with switches
PoDL	Not supported	Supported, but cost intense due to e.g. required high quality cabling + potential need for common ground line
Safety	All nodes are independent	Master node required: single point of failure

* depending on used Transceiver and topology

1 1 Automotive Electronics | AE/PAI-IP | 2022-08-25

CAN XL – Next Step in CAN Evolution Price advantage of CAN XL over 10BASE-T1S

CANIVI

			TOBASE-115
01	Lower price per bit on the cable	Efficient line coding: only 10% overhead => 11 Mbit/s required for 10 Mbit/s	Inefficient line coding: 250% overhead => 25 Mbit/s required for 10 Mbit/s
02	Cheaper network topology/cabling	complex topologies possible (verification by sim.) need only 1 connector for the node	max. 10 cm Stubs, daisy-chain required, need 2 connectors for the node
03	Cost optimal bit rate configurable	Any data bit rate configurable in range [1 20 Mbit/s]	only 10 Mbit/s
04	Cost optimal transceivers usable	4 Transceivers (High Speed, FD, SIC, SIC XL) => trade off between bit rate and price	one transceiver
05	Only 2 ECU Pins required	2 pins (CAN_H, CAN_L)	4 pins due to daisy chain; 2 pins in, 2 pins out
06	Only 2 Transceiver Pins required	2 pins (RX, TX)	3-10 Pins, depending on used interface

10DACE T1C

KEY PERFORMANCE NDICATORS

CAN XL – Next Step in CAN Evolution CAN XL Node (CiA610-1) Usability Matrix

	Software Configurable Node behavior (CAN Variant)							
Protocol	CAN	CA	N FD	CAN XL				
(Data Link Layer)	node	no	ode	node				
Max. payload	8 bytes	64	bytes	2048 bytes				
Transceiver (Physical Layer)	CAN	CAN FD	CAN SIC	CAN	CAN FD	CAN SIC	CAN SIC XL FAST*	CAN SIC XL FAST*
Max. bit rate in real OEM applications	500	2	5	500	2	5	5	up to 20
	kbit/s	Mbit/s	Mbit/s	kbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s
Error Signalling	Error	Error	Error	Error	Error	Error	not	not
	Flag	Flag	Flag	Flag	Flag	Flag	available	available
Topology Dimension	large	normal	large	large	normal	large	extra large	large
* CAN SIC XL Transceiver operated in FAST Mode			XL & FD compatible			XL and FD NC	DT compatible	
Hint: CAN XL Transceiver operated in SLOW Mode = CAN SIC Transceiver			→ mixed FD/XL network possible → pure			→ pure CAN	I XL network	

1 4 Automotive Electronics | AE/PAI-IP | 2022-08-25

CAN XL – Next Step in CAN Evolution Key Success Factors

Bit rate up to 20 Mbit/s

just limited by selected PHY technology

CAN XL protocol targeted for high-speed CAN XL transceivers (up to 20Mbit/s), but also works with CAN FD or CAN SIC transceivers

Incremental upgrade

& mixed networks (CAN FD & CAN XL)

Co-existence of "cheap" CAN FD and fast CAN XL nodes in same network

Supports complex network topologies

Flexible trade-off between speed and complex networks (e.g. long stubs supported)

Price

expected to be cheaper than 10BASE-T1S

Large payload size + New Functions (SDT, VCID, ...)

allows tunneling of e.g. Ethernet traffic (transparent for higher layer protocols)

All kind of payload types supported – including largest possible Ethernet frame, IPv6, ...

Extreme scalability

- wide range of bit rates configurable [up to 20 Mbit/s]
- ▶ any transceiver (Classic, FD, SIC, SIC XL) usable
- Use Cases: (1) Signal based communication
 (2) Service oriented communication (via ETH tunnelling)

AUTOSAR support

Concept proposal since early 2020 – will be available by end of 2022

Availability

- CiA610-1 specification released in November 2021 as DSP (ISO Standardization ongoing: adopt CiA610-1 content)
- Samples of automotive micro controllers with CAN XL will be available in 2022

15 Automotive Electronics | AE/PAI-IP | 2022-08-25

